
Smart Access
Solutions for Microsoft® Access® Developers

1 Access Interfaces:
User Configuration
Rebecca M. Riordan

6 Sending E-mail with Access
Rick Dobson

11 Access Traps for the
Naïve Developer
Garry Robinson

15 Access Answers:
Working All Day
Doug Steele

20 September 2004 Downloads

September 2004
Volume 12, Number 9

Applies to
Access 2000

Applies to
Access 95

Applies to
Access 97

20002000 20022002

Applies to
Access 2002

Applies to
Access 2003

20032003

Access Interfaces

User Configuration
Rebecca M. Riordan

This month, Rebecca Riordan discusses the importance of giving your users control
over fundamental UI elements such as fonts and colors. It’s simple to do, and your
users will love you for it.

ONE of the fundamental principles of user interface design, and perhaps
the most important, is “Put the user in control.” Get it right, and
users will be amazingly tolerant of the occasional infelicities in your

design. Get it wrong, and it doesn’t matter how beautiful your color schemes
or elegant your graphic elements are—your system will be regarded as
fundamentally broken.

Most of us work pretty hard to keep at least the illusion of having our
users in control. We provide multiple paths through the application and
multiple levels of undo. We’re careful to prevent our applications from doing
anything that might seem arbitrary or high-handed (you do do these things,
right?). But developers hardly ever allow the user to control the most
fundamental characteristics of the user interface: the fonts, colors, and graphic
styles. And yet, as you’ll see this month, doing so is (at least technically) a
simple process.

The canonical method for providing user customization in Windows
applications is, of course, the Windows Control Panel. Access provides partial
support for Control Panel settings, but that support is problematic.

If you use the constants shown in the list that’s included in the Download
file, Access will update its UI colors when the user changes them in the
Control Panel. This is great, as far as it goes. Unfortunately, that’s not very far.

The first problem is that it’s difficult to determine how to map the Control
Panel components to the elements of a database application user interface.
The vbWindowBackground is straightforward enough, but what color
should the background of a textbox be? You can’t simply pick something—
vbInfoBackground, the background color of a ToolTip, for example—without

20002000 20022002 20032003

vb123.com

www.vb123.com/smart

2 www.pinnaclepublishing.comSmart Access September 2004

running the risk of surprising your application’s users.
(Remember that bit about not appearing arbitrary?)

The other problem, of course, is that Access only
supports the colors specified in the Control Panel, not the
fonts and (most importantly) the font size chosen by the
user. There are Windows APIs that allow you to retrieve
this information, but you must do so manually and, I’ll
warn you up front, it gets ugly.

In most situations, custom configuration is simple
to implement and matches the needs of your users
reasonably well. At any rate, while I’ve had clients
complain about not having any way to change the color
of a form, I’ve yet to have a customer complain that
the application didn’t automatically reflect the Control
Panel settings.

Designing the infrastructure
Figure 1 shows a simple little form from this article’s
sample database. As you can see, it provides a way
for the user to change the font used to display the
controls’ labels, the background color of textboxes, and
the control style.

The first thing that may strike you about the sample
is that it’s a slightly odd collection of properties. Actually,
I picked this set of properties intentionally to make the
point that you need to consider what properties you
should expose for user configuration. (Really, it was
intentional; I wouldn’t lie to you about something like
that.) With this form, you’re working with essentially
three different types of settings—fonts, colors, and
possibly graphics—but each type appears in a lot of
different places.

So, for example, you might allow users to choose one
font and size for labels and a different one for control text.
Or separate fonts for labels, textboxes, and listboxes. Or
separate fonts for active and inactive versions of each of
these, or... You get the picture.

This is one of those situations where more is not
necessarily better. If you were to allow users to
individually set the visual characteristics of each and
every form and control in your application, your good
intentions would almost certainly backfire: Your users
would be overwhelmed. It’s better to select categories of
settings and set those categories at a level of granularity

that suits the users. Then you need to implement those
categories consistently. The only practical exception to
this principle is to allow users to set the background color
of individual forms. Some users find having each form set
to a different color creates a useful sort of “roadmap”:
They know the pink form is for Customers and the yellow
one is for Products, for example.

Once you’ve determined what characteristics you’ll
allow users to change, the next step is to determine a
persistence strategy. You can persist a set of user
selections in a table, in custom properties, or even in an
XML file or the Registry (if you’re brave). I tend to use
tables, simply because I think in a table-oriented way, but
you should choose the method that makes best sense in
your environment.

You must also determine where the customizations
will be persisted. In the canonical multi-user application
that splits the front-end interface elements and back-end
data, you generally want to store the customization in
the front-end database. This works well if there’s a
more or less one-to-one relationship between users and
workstations. This is typically the case—each user has a
desk, and each desk has a computer. But if you need to
support roaming users who might be working remotely
from different workstations, or if a single workstation is
shared among multiple users, then it’s best to persist the
customizations in the back-end database.

Assuming that you’re storing the data in a table,
you must decide what the structure of the table is to be.
Figure 2 shows a classic normalized version. If there’s any
possibility that the set of characteristics will change (and

Figure 1. A simple configuration form from the sample database.

Figure 2. A normalized structure for persisting user customizations.

Figure 3. A
flattened table
structure for
persisting user
customizations.

www.pinnaclepublishing.com 3Smart Access September 2004

it happens more often than you might expect), this is the
structure to use.

In this table, each record contains a field for a String
value (such as a font name), an Integer value (such as a
color value), and a Logical value (as is used by the Bold
and Italic settings). For any given row, two of these three
fields will be empty, resulting in a very sparse table and
some waste of disk space. However, since values of all
three types must be stored, the only alternative would be
to use a generic field type such as String and cast the
values to the appropriate type at runtime, which would
have much higher overhead.

Alternatively, you can flatten the table schema as
shown in Figure 3. This makes the database analyst in me
shudder, but in reality it’s a very good solution for the
majority of applications. Like any flat structure, it does
require that you know in advance what properties you’ll
allow to be customized, but as you’ve seen, this will be
determined during your initial analysis. Furthermore, if
the set of customizable characteristics changes, you’ll
need to change both the structure of the table and the
code that uses it.

Despite these problems, this flat structure has
much to recommend it. It requires no joins, and only
a single record need be returned from the database in
client/server environments. Also, because the field
names are known in advance, runtime processing is
somewhat simpler. This is the structure I use most often
in my own work, and the one demonstrated in the
article’s sample database.

Coding the common dialogs
Once you’ve designed your infrastructure, the next step
is to build the configuration form for your application.
The form in the sample database, shown in Figure 1,
demonstrates the three most common techniques that
you’ll require for this purpose. Each of the buttons labeled
“Change...” opens a subsidiary dialog that allows the user
to choose the appropriate settings. The first two buttons
use standard Windows dialogs, and the third opens a
custom form.

The form uses the Microsoft Common Dialog ActiveX
control to open the standard Windows Font and Color
pickers. You should be aware that the Common Dialog
control has some problems when used from Access, and
many developers prefer to go directly to the Windows
API. My requirements are straightforward, however, and
the Common Dialog ActiveX is more than sufficient for
my purposes.

The following code shows the Click event code
for the single font property on the sample form. Using
commonDialogs (the name of the Common Dialog control
that I dragged onto the form), the code first sets the
control’s Flag property to cdlCFScreenFonts so that only
fonts that can be displayed on the screen are shown (that

is, no printer fonts will be displayed). The code then
calls the ShowFont method to display the dialog modally.
The result (with the font list on my system) is shown in
Figure 4.

Private Sub showFonts_Click()
 With commonDialogs
 .Flags = cdlCFScreenFonts
 .ShowFont

 fntName = .FontName
 fntSize = .FontSize
 fntBold = .FontBold
 fntItalic = .FontItalic
 End With

 Me.labelFont = makeFontName

End Sub

The Common Dialog control exposes the user’s
selections as a set of properties that remain available
after the font picker itself is closed. My code uses the
properties—FontName, FontSize, and so on—to set local
variables to the values that the user selected in the dialog.
The last line in the procedure calls a utility function of
mine, makeFontName, that concatenates the values stored
in the local variables. The text of the font textbox is set to
the value returned from the makeFontName function.

The next set of code shows the click event handler
for the Change button associated with the control
background option. It’s a simpler version of the previous
code. The ShowColor method of the commonDialogs
control is called to display the standard color picker
shown in Figure 5. Once the user closes the dialog and
execution continues, the procedure sets the local variable
ctrlColor to the selected color (returned by the Color
property of the common dialog) and sets the background
of the relevant control on the configuration form:

Private Sub showColors_Click()
 commonDialogs.ShowColor

Figure 4. The standard Windows Font picker.

4 www.pinnaclepublishing.comSmart Access September 2004

 ctrlColor = commonDialogs.Color
 Me.bkgdColor.BackColor = commonDialogs.Color
End Sub

Coding custom dialogs
As you can see, these are very simple procedures to
implement. This approach also has the advantage of
using dialogs that your users are likely to be familiar
with. The problem is that these dialogs may provide more
functionality than your application might need. The Font
picker, for example, allows the user to select the font
name, font size, and font style. But you might want to
constrain the font size, for example, to avoid having the
user select a font that’s too big to be displayed in the
textboxes on your forms.

In this case, of course, you’ll need to create custom
dialogs. The third option on the configuration form,
Control Style, shows the general procedure. The custom
form in the sample database is shown in Figure 6. The
following code block shows the click event handler that
opens it:

Private Sub showStyles_Click()
 DoCmd.OpenForm "ControlDisplay", acNormal, _
 , , , acDialog

 If Application.CurrentProject.AllForms_
 ("ControlDisplay").IsLoaded Then

 controlStyle = Forms!ControlDisplay.Tag
 DoCmd.Close acForm, "ControlDisplay"

 End If

 Me.ctrlStyle.SpecialEffect = controlStyle
 Me.ctrlStyle = makeStyleName
End Sub

The basic procedure here is identical to the other
two procedures you’ve seen. The difference is in how the
dialog itself behaves. The first line of the procedure opens

uses the IsLoaded property to determine what action the
user took—the form will only be loaded if the user clicked
the OK button. The code then sets the local variable,
controlStyle, and the style of the control.

All that remains is the mechanics of persisting and
restoring the values the user has chosen. The following
code from the sample database stores the values to the
database. Remember that each of the click procedures
stored the user’s choices in local values. All this
procedure needs to do, then, is update the appropriate
record using standard data handling techniques:

Private Sub btnOK_Click()
 Dim rs As Recordset
 Set rs = CurrentDb.OpenRecordset("Settings")
 With rs
 .Edit
 !FontName = fntName
 !FontSize = fntSize
 !FontItalic = fntItalic
 !FontBold = fntBold
 !Color = controlColor
 !Style = controlStyle
 .Update
 End With

 rs.Close
End Sub

For efficiency’s sake, the procedure updates all
values, whether or not they’ve been updated by the user.
This works perfectly well in the sample since, as you’ll
see, the local variables are initialized in the form’s Load
event. If you vary this technique, you’ll need to check for
Null values here.

A production application would require DAO code
to find the appropriate record to update. Because the
configuration table in the sample database contains only
a single row, I’ve omitted it from the sample.

The following code loads the stored customizations.
The first section of the procedure consists of standard
data handling code to load the values into local
variables. Again, I’ve omitted the code to find the
appropriate record:

Private Sub Form_Load()
 Dim rs As Recordset
 Set rs = CurrentDb.OpenRecordset("Settings")
 rs.MoveFirst

 With rs
 fntName = !FontName
 fntSize = !FontSize
 fntItalic = !FontItalic
 fntBold = !FontBold

Figure 5. The standard Windows
Color picker.

Figure 6. The custom
Control Style dialog
from the sample
database.

the dialog modally.
If the user selects
Cancel, the form is
closed. If, however,
the user selects OK,
the form is hidden
so that its values
remain available to
the click procedure
that called it.

As you can see,
the click procedure Continues on page 18

www.pinnaclepublishing.com 5Smart Access September 2004

FULL PAGE AD:

FMS

6 www.pinnaclepublishing.comSmart Access September 2004

Smart Access

Sending E-mail with Access
Rick Dobson

In this article, Rick Dobson explores using the robust database
management features of Access to develop e-mail solutions
for managing business relationships.

ACCESS is the premiere development tool for small
businesses and departments in medium-sized
businesses. At the very heart of many businesses

are the needs to keep track of and communicate with
prospects, clients, vendors, and partners via e-mail.
Access is great for keeping track of people, such as
prospects and clients. However, Access isn’t well known
for its ability to send e-mail to people. I’m going to show
you a couple of ways that you can leverage Access’
outstanding database management development features
when sending e-mail.

Of course, Outlook is the general-purpose Office
tool for e-mail and related kinds of requirements. Access
can create e-mail solutions with Outlook or work
independently of Outlook. Depending on your type of
e-mail task, you may prefer one approach over the other.
For example, Outlook offers rich previewing and editing
tools for e-mail. If this is a requirement for your e-mail
task, it makes sense to take advantage of Outlook. On the
other hand, Outlook has built-in security features that
block or restrict the ability of rogue software (such as a
virus) from sending e-mail to everyone in its Address
Book. Unfortunately, this security measure makes
Outlook unfriendly for servicing your legitimate need
to send a message to everyone or even a substantial
subset of your contacts. In this situation, you can use
CDO (Collaboration Data Objects) programmed with
VBA from Access to push out e-mail messages to many
different recipients. The CDO library isn’t known for its
ease of use, but I’ll show you a fast way to get started
programming e-mail solutions with CDO from Access
VBA projects.

Two Access e-mail solutions
I don’t advocate using Access as a replacement for
Outlook. Nevertheless, the database management features
of Access make it an ideal development tool for selected
types of e-mail applications. I’ll highlight two common e-
mail solutions that benefit from development with Access.

First, a business may need to send any of several
routine e-mail messages to correspondents. The term
routine applies to those messages that are the same for
all recipients, except for a few minor changes (such
as the name of the person you’re sending it to, the

name of a product, or the duration of a subscription or
membership). These routine messages will typically
thank clients and prospects for their interest in a firm,
remind a subscription client that it’s time to renew, or
confirm with marketing prospects the date, time, and
venue for a presentation. Many businesses already have a
collection of informal templates for these kinds of e-mail.
In addition, each message template will typically feature
one or more fields that require editing whenever the
message is sent.

You can use Access to store the information about
each message as well as data about the fields that can
change. Access forms can simplify modifying field values
just before sending a message. When sending messages
one at a time to individual correspondents, using Access
and Outlook together makes a lot of sense. You could, of
course, also use Microsoft Word’s mail-merge facilities.
However, an integrated approach built on Access and
Outlook allows you to take advantage of Outlook’s
editing/previewing features along with Access’ data
management capabilities (both for tracking messages
and the users who are to receive those messages).

A second kind of e-mail application requires sending
the same message to all of your contacts or a substantial
subset of them. Outlook distribution lists offer one
approach to this task, but these lists don’t update
automatically like queries do. Access queries offer a more
flexible means of specifying who can receive a message.
You can program Outlook with VBA to repeatedly send
the same message to a subset of members from an
Outlook Address Book, but Outlook has no way to
distinguish between your VBA program and a virus.
Therefore, both your program and the virus encounter the
well-known security prompt (see Figure 1). This prompt

Figure 1. The Outlook security prompt that inhibits sending the
same e-mail to a list of recipients.

20002000 20022002 20032003

www.pinnaclepublishing.com 7Smart Access September 2004

requires a user to manually click a button, and the prompt
will recur at regular intervals if you attempt to send a
message to a long list of correspondents.

The security prompt problem has multiple solutions,
and I’ll show you one based on CDO (in my article in last
month’s issue, I discussed another solution: Express
ClickYes). CDO offers a collection of classes that you
can program with VBA. The NewMail objects simplify
sending e-mail messages.

Sending one of several e-mails
To send one of several routine messages requires a
collection of elements. First, you need to create a set of
one or more messages that you save as files. Second,
you need to create an Access database for tracking
messages. The Access database also stores a list of e-mail
correspondents in its Contacts table. The sample database
for this article, SA0204.mdb, contains a Contacts table
with several rows of data. The application uses the contact
information to personalize your messages and to specify
where to send an e-mail. Third, you need Outlook. After a
user selects a message and performs any customization,
the application opens Outlook and populates the fields of
a new message to allow you to preview the message. This
preview offers a second opportunity to customize a
message before clicking the Send button in the Outlook
message window to forward the message to the Outbox.
Outlook automatically sends the message from the
Outbox via a regular schedule or the next time a user
clicks the Send/Receive button.

Since the application programmatically manipulates
Outlook, you need a reference to the Outlook object
library. I developed the sample applications for this article
with Access 2002 and Outlook 2002. Therefore, the sample
Access database file has a reference to the Outlook 10.0
object library. If you use another version of Office, such as
Office 2000 or Office 2003, you need a reference to either
the Outlook 9.0 or Outlook 11.0 object library.

You can compose the items in your message collection
with any program that edits and saves plain text or
HTML. I used Word as the e-mail editor for Outlook with
Plain Text selected for the message format in order to
generate a message with plain text formatting. This
format doesn’t permit formatting such as active
hyperlinks or even bold text, but you can see what your
message will look like in an e-mail reader set to read only
plain text (the HTML and Rich Text message format
settings in Outlook provide more formatting options).
Since Outlook and CDO both support an HTML property
for a message or mail object, I selected HTML as the
alternative to plain text in the sample application. You can
use either Outlook/Word with an HTML output setting or
any HTML editor to compose messages in HTML format.
I chose FrontPage 2002 as my HTML editor.

The three messages for this sample application
have names ClubRenewal.htm, ClubWelcome.txt, and

WidgetEnquiry.htm. They reside in the Articles folders of
the C: drive on my test computer. You can store your
messages wherever you choose, but you must synchronize
the paths and file names to the messages with the table
that specifies information about the messages.

Within each message, you can use one or more
keywords to designate fields that users can update at
runtime. You’re free to designate any keyword that you
prefer. For example, the message in the ClubWelcome.txt
file uses the keyword NewMemberName to designate
the name of the recipient. On the other hand, the message
in the ClubRenewal.htm file specifies the name of the
recipient using ClubMemberName as a keyword. The
application has built-in mechanisms for tracking
keywords in messages. In addition, users can edit the
values that replace keywords in messages from Access
forms. Two tables—Messages and MessageFields—track
the messages for an application along with the message
keywords and their last value.

A value is a string that replaces the keyword in sent
messages. For example, the keyword NewMemberName
can have a last value of Rick Dobson. If Virginia Dobson
is the next member to join the club, then the last value of
the NewMemberName keyword will change from Rick
Dobson to Virginia Dobson.

The Messages table contains a row for each message
along with six columns to distinguish each message. The
MessageID column is an Autonumber field that provides
a unique value as the primary key. The MessageName
column contains a short descriptive text field for the
message. The Subject column contains the default Subject
field value for a message. Users can override this field
value from Outlook before clicking the Send button in
the Outlook message window. The HTML column has a
Yes/No data type. A value of Yes corresponds to an
HTML format, and a value of No specifies a plain text
format. The Path and Filename columns are two text
fields that designate the path to the message file.

The MessageFields table has four columns. The
initial MessageID column has a Long Integer value that
points back at one of the rows in the Messages table. The
FieldID column also has a Long Integer value, which
specifies one of the keywords in the message file. Since
the message in the ClubWelcome.txt file has four
keywords, its FieldID values range from 1 to 4. The
FieldName and LastFieldValue columns both have a text
type. These columns designate the names of keywords
and their last value.

The Contacts table has four columns. The first column
is an Autonumber column. The second and third columns
are for the first and last name of a contact. The fourth
column contains the e-mail address of a contact.

Forms and procedures
Figure 2 shows frmMessages, which is a main/subform
that displays Messages table column values in its

8 www.pinnaclepublishing.comSmart Access September 2004

main form and matching column values from the
MessageFields table values in its subform. The top five
textboxes in frmMessages with a checkbox between the
third and fourth textboxes are bound to the columns of
the Messages table.

The three textboxes immediately above the subform
are unbound. These three controls allow you to display
contact information. The textbox with a label of “To
criteria” lets a user enter any part of the values for the
first and last names, such as Rick (for Rick Dobson).
Clicking the Find button recovers the first and last names
as well as the e-mail address of the first row in the
Contacts table that matches the criterion. The application
puts the combination of the first and last name in the
next-to-last textbox on frmMessages, and it puts the
e-mail address in the form’s last textbox. In addition, the
Click event procedure for the button updates the last
column value in the first row of the subform. Therefore,
you should always reserve this message field value for
the full name of recipients.

The Click event procedure for the form’s Send button
populates a new Outlook mail item with selected values
from frmMessages, such as the recipient’s e-mail address
and the message’s subject, as well as an edited version of
the message. Keywords in a saved message are updated
with values from the LastFieldValue column in the
message to be sent.

The following code is from the Click event procedure
for the Find button on frmMessages. The code begins by
creating a SQL Where clause to be used against the
Contacts table. The constant strDQ holds four double
quotation marks, which are required to insert a single
double quote into a string. I’ve used the Like operator to
match any sequence of characters in the first and last
names that have a space between them. Three DLookup
functions populate the next-to-last textbox on the form
(txtSenderName) and the last textbox on the form

(txtE-mailAddress). The code closes by populating the
last column value in the first row of the subform
(ctl1.Form.Controls(6)):

strSQL = "(Fname & " & "Lname) " & _
 "Like " & strDQ & "*" & _
 txtSenderCriterion & "*" & strDQ

strFirst = DLookup("Fname", "Contacts", strSQL)
strLast = DLookup("Lname", "Contacts", strSQL)
txtSenderName = strFirst & " " & strLast
txtE-mailAddress = _
 DLookup("E-mailAddress", "Contacts", strSQL)

Set ctl1 = ctlMessageFields
ctl1.Form.Recordset.MoveFirst
ctl1.Form.Controls(6) = strFirst & " " & strLast
ctl1.Form.Refresh

The next set of code is from the Send button Click
event procedure. The code begins by using the
FileSystemObject to open the saved message specified in
the current row in the frmMessages form. Your VBA
project needs a reference to the Microsoft Scripting
Runtime for this to work. Next, the code edits keywords
in the message based on the values in the LastFieldValue
column of the frmMessageFields subform. The code
finishes by passing the e-mail address, formatting style
for the message, subject field, and a string with the edited
message to the SendToSubjBody procedure:

str1 = txtPath & txtFilename
Set tst1 = fso1.OpenTextFile(str1, ForReading)
str2 = tst1.ReadAll

Set ctl1 = ctlMessageFields
ctl1.Form.Refresh
ctl1.Form.Recordset.MoveFirst
For int1 = 1 To ctl1.Form.Recordset.RecordCount
 For Each ctl2 In ctl1.Form.Controls
 If ctl2.Name = "txtFieldName" Then
 strFind = ctl2.Value
 End If
 If ctl2.Name = "txtLastFieldValue" Then
 strReplace = ctl2.Value
 End If
 Next ctl2
 str2 = Replace(str2, strFind, strReplace)
 ctl1.Form.Recordset.MoveNext
Next int1

SendToSubjBody txtE-mailAddress, _
 chkHTML, txtSubject, str2

The last bit of code from this application that I want
to show you is from the SendToSubjBody procedure. This
procedure begins by instantiating a variable that points at
an Outlook session. Then, the code uses the session to
create a new mail item. Before displaying the mail item in
Outlook, the procedure populates three properties for the
mail item. The To property accepts the e-mail address. The
Subject property takes the String value for the message’s
subject passed to the procedure. The procedure populates
one of two properties depending on the formatting for the
message. When the message has an HTML format, the
procedure assigns the string with the message to the
HTMLBody property. Otherwise, the procedure assigns
the message string to the mail item’s Body property. The
final statement in the routine displays Outlook with the

Figure 2. The frmMessages form lets a user look up contacts and
update keywords in saved messages before opening a message
in Outlook.

www.pinnaclepublishing.com 9Smart Access September 2004

newly composed message. From this point, the user can
either click the Send button or perform any final editing
prior to clicking the button:

Set ola1 = New Outlook.Application

Set mai1 = ola1.CreateItem(olMailItem)
mai1.To = strTo
mai1.Subject = strSubj
If bolHTML = True Then
 mai1.HTMLBody = strBody
Else
 mai1.Body = strBody
End If
mai1.Display

Sending the same message to multiple recipients
Sending the same message to multiple recipients is a
different kind of e-mail application than the preceding
one, which enables users to send any one of several
different e-mail messages to one e-mail address. Sending
the same message to multiple recipients is suitable for
many business contexts. I use this kind of capability to
notify registered visitors about new content at
ProgrammingMSAccess.com. If you want to get a first-
hand feel for what this type of application can do, register
for the site’s messages at www.programmingmsaccess
.com/mygb.htm. Consulting firms can use the capability
to inform clients and prospects about new services, staff
additions, and white papers or presentations authored by
staff persons.

As I mentioned previously, the built-in security
prompt in Outlook makes it difficult to perform this kind
of task. In addition, Outlook automatically saves a copy
of each message e-mailed in its Sent folder. If you’re
e-mailing the same message to several thousand, or more,
recipients, it’s unlikely that you wish to keep a copy of
each sent message. Finally, when sending the same
message (perhaps differentiated by recipient name), you
may want to filter your contact list to just a subset of
contacts who should get a copy of the message. Outlook
does offer filtering, but it doesn’t have the same rich
query features provided by Access. Using Access for
filtering a list of contacts will be substantially more
flexible than using Outlook (and more familiar to Access
developers like you).

The following sample demonstrates how to use the
CDO object model as an alternative to Outlook for
sending the same message to multiple recipients with
Access. When you program the CDO object model with
VBA, you can avoid the Outlook security prompt. In
addition, you bypass the whole Outlook user interface,
which means you don’t automatically retain copies of
messages in Outlook folders. You also gain the flexibility
to readily specify recipient e-mail addresses from any
source, such as an Access query.

The CDO object model used to be available as a
separate redistributable, but it now ships exclusively as
part of several packages, including Office 2000 through
Office 2003. However, CDO doesn’t install by default with

Office unless you perform a complete installation. The
CDO library is available from the cdo.dll file, which
typically resides in the local resources folder (1033 for the
US) of the \Program Files\Common Files\System\Mapi\
path. You can add a reference to the CDO library by
selecting Microsoft CDO 1.21 Library from the Available
References list of the References dialog box from the
Tools | References menu.

The sample for mailing one message to multiple
recipients consists of three elements. First, you need a list
of contacts. The sample demonstration uses a query
(qryContacts) based on the Contacts table. Second, you
need a message. The sample message is in HTML format.
The application is set up to accommodate HTML instead
of plain text. HTML format offers the ability to include
active hyperlinks in a document, which isn’t available
from messages in plain text format. Many recipients
prefer active hyperlinks in messages because the recipient
can click the links to view the hyperlinked Web page
instead of having to copy a URL into the Address box
of their Web browser. The third element is a form,
frmBatchMail, which includes textboxes for specifying the
parameters of a typical batch mail job and a button that
has an event procedure for launching the mail job. The
form’s Load event procedure automatically populates
the textboxes for the sample batch job that I describe
here. You can change the settings of the Load event
procedure to work with any message and query for

QUARTER PAGE AD:

SAGEKEY

10 www.pinnaclepublishing.comSmart Access September 2004

contacts that you prefer.
The qryContacts query simply returns all the

columns for all the rows in the Contacts table. Since the
sample Contacts table contains just four rows, there’s no
need to restrict which rows are retrieved. However, a
substantially larger Contacts table might contain more
columns to support filtering on various criteria. In
addition, Access makes it simple to filter on substrings for
the Fname, Lname, and E-mailAddress columns. For any
application where you’re mailing to e-mail addresses, you
shouldn’t use the Access hyperlink data type to represent
e-mail addresses. Instead, use text data types that contain
e-mail addresses.

I’ve saved the sample message with the name
ProgrammingMSAccess_Feb_2004.htm in the Articles
folder. You can use any other name and folder you choose
as long as you update the frmBatchMail Load event
procedure or override the default settings in the form
when it opens. In addition, the sample message initially
designates the recipient’s full name (first name, space, last
name) with the FullName keyword. You can also override
this keyword for initially representing a recipient’s full
name either from the frmBatchMail form or its Load
event procedure.

Figure 3 shows frmBatchMail with the default
settings. The Subject textbox is the Subject for the
messages that the application pushes out to recipients in
the source of contacts, which is specified in the last
textbox on the form. The From textbox designates the
Display name of the recipient and, optionally, the e-mail
address of the sender (that would be you). If you elect to
designate a sender e-mail address, place the address in
angle brackets after the Display name.

The code behind the form takes advantage of the
NewMail class to drastically simplify the use of the CDO
library. The NewMail class resides in the CDONTS library.
This library is a subset of the CDO library that’s available
from cdo.dll. NewMail class instances feature a collection
of read-only properties that let you set, but not read, the
properties for a class instance. A NewMail class instance
corresponds to a single e-mail message. After using the
instance once, you should discard the instance and make
a new one for another message. NewMail class instances
permit you to set most common e-mail fields with String

or Long values.
The following code shows an excerpt from the Click

event procedure for the button on frmBatchMail. The
listing begins by reading the message file into a String
variable (str2). Next, the code opens a record source for
contacts. After these two preliminary steps, the code loops
through all the rows in the contacts record source. The
code within the Do loop begins by creating a NewMail
class instance. Then, the code assigns the Subject and
From properties of the class instance. The assignments to
the BodyFormat and MailFormat properties are necessary
for a message in HTML format. See the NewMail class
online documentation at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cdo/html/
_denali_newmail_object_cdonts_library_.asp for other
possible settings of these two properties. Next, the code
replaces the initial keyword or the last person’s full name
from the string with the message before assigning the
message to the Body property of the NewMail object. Just
before invoking the Send method to route the message to
a recipient, the code assigns the E-mailAddress field from
the query to the To property of the NewMail object. The
loop closes by setting the NewMail object to Nothing and
moving to the next row in the contacts query source:

str1 = txtPath & txtFilename
Set tst1 = fso1.OpenTextFile(str1, ForReading)
str2 = tst1.ReadAll

Set rst1 = New ADODB.Recordset
strSource = txtNamesQry
rst1.Open strSource, CurrentProject.Connection

strFind = txtFullName
Do Until rst1.EOF
 Set nmo1 = CreateObject("CDONTS.NewMail")
 nmo1.Subject = txtSubject
 nmo1.from = txtFrom
 nmo1.BodyFormat = 0
 nmo1.MailFormat = 0
 strReplace = rst1("Fname") & " " & rst1("Lname")
 str2 = Replace(str2, strFind, strReplace)
 strFind = strReplace
 nmo1.Body = str2
 nmo1.To = rst1("E-mailAddress")
 nmo1.Send
 Set nmo1 = Nothing
 rst1.MoveNext
Loop

All of my examples are from the area called CRM:
Customer Relationship Management. You can position
yourself to serve whole new areas of business needs
that are both common and growing in importance—
incorporating e-mail into your applications to manage
business relationships. ▲

409DOBSON.ZIP at www.pinnaclepublishing.com

Rick Dobson is an author/trainer/Webmaster. His practice, CAB, Inc.,

sponsors national and Web-based seminar tours. His most recent

book is Programming Microsoft Office Access 2003, and one of his

most recent DVDs is “Programming Visual Basic .NET and ADO.NET

with SQL Server and Access.” Rick is an MCP for Visual Basic .NET.

You can learn more about his practice, books, DVDs, and seminars at

www.programmingmsaccess.com. rickd@cabinc.net.

Figure 3. The frmBatchMail form with the default settings
specified by its Load event procedure.

www.pinnaclepublishing.com 11Smart Access September 2004

Smart Access

Access Traps for the
Naïve Developer
Garry Robinson

We all love Access, but our favorite tool has many “features”
that lead the naïve developer into error. You may not
appreciate the cost of these less-than-helpful additions but,
should you upgrade to an enterprise database, you’ll regret
every one of them. Garry Robinson outlines those errors and
how to avoid them (along with some code to find the errors).

RECENTLY I was asked to start preparing one of the
Access databases that my company provides
support for so that it was ready to upgrade to SQL

Server 2000 or another enterprise database. The database
was initially designed by a techno-savvy person, who, to
his credit, came up with a database design that has stood
the test of time and the critique of many of his peers.
Unfortunately, Access can be a little too accommodating
when an enthusiast designs a database, and this can
allow design flaws to creep in—errors that a database
professional may have been wise enough to avoid.

I’m going to discuss some of the subtleties that
you’ll need to address in your database tables in terms
of upsizing your tables to an enterprise or open source
database. It’s better to make your database as perfect as
you can before you try to convert your data. Once you’re
in an environment where you have Access as a front end
and some other database as your back end, things get a lot
more complicated. Or, if you’re like me, improving your
database model and reducing the size of your database is
just a good thing to do.

Index gotchas
If Access is going to update a back-end database through
ODBC, Access requires that a table must have at least one
unique index. This means that just about every table in
the database will need to have a primary key. A primary
key isn’t absolutely essential since any unique index on a
table will do. In fact, tools like the SQL Server upsizer
wizard will simply make the first unique index in the
table the primary key.

Once you decide that you need to add a primary key
to a table, you may not be allowed to add the key because
you have duplicate values in the fields that you want to
use in your primary key. There are two solutions. The first
is to add one of those ugly AutoNumber fields to your
table and make this your primary key. This is certainly

quick and, if you resolve to review the key again
later, you’re really no worse off than you were before
you started.

The better way to solve the duplicate items issues is
to use the Find Duplicates query wizard (just click on the
new query button in the database container to get to the
wizard). This query will identify your duplicate values so
that you can eliminate them. After having revised your
index, don’t forget to renew your database’s relationship
diagram if there are any other related tables.

If you don’t add a primary index to a table straight
away, Access goes out of its way to offer to add a unique
index for you. Some naïve developers accept this offer
and never give it another thought. Unfortunately, the
default name for this primary key is “ID” and the naïve
developer often accepts this. Once Access has played this
card, a subsequent trap for the unwary occurs when the
lookup table wizard is used. If the wizard is invoked,
Access will often add an auto number field to a main table
that matches the auto number field in the lookup table.
This has the effect of storing a number in your table and
a number in your lookup table. In addition, the name
(probably “ID”) is also duplicated into the main table,
leading to more confusion. This repetition of names
makes it difficult to figure out what tables are related to
each other.

Another problem with these “ID” fields is that the
field will generally be accompanied by a unique index
that’s also called ID. This unfortunate naming convention
will cause problems with the transfer where it may be that
indexes and fields might not be allowed to share names
(or where “ID” is a reserved word). The solution is to
search through and eliminate all ID field and relationship
names and replace them with meaningful names.

Another Access “feature” whose results you can run
into during conversions is the AutoIndex option. This
little “nuisance” is located in the Table/Queries tab in
Options (see Figure 1). Even though I try to clear this
option as soon as I start working on a database, many
developers are unaware of this option. The result is that
there could be many tables in the database with indexes
that weren’t planned for. If you think that this is unlikely,
try this little exercise:

1. Make sure that the option “Auto Index on Import/

20002000 20022002 20032003

12 www.pinnaclepublishing.comSmart Access September 2004

Create” has the value “ID”.
2. Open a new table in design mode and add a field

with any name.
3. Add “ID” to the end of the field name.
4. Save the table.
5. When prompted, choose Yes to create a primary key.
6. Now open the table in design view and choose

View | Indexes from the menu.

You’ll now find that you have two indexes in the
table: your primary key and the key automatically
generated on the field ending with “ID”.

Imagine that particular “feature” applied in a
database with 100 tables (or more) and you’ll start to
see the challenges that can beset a database developed
by an enthusiastic developer with the assistance of an
enthusiastic Access wizard interface. While some of these
indexes might actually speed data retrieval, keeping all of
these indexes up-to-date is slowing down your database.
And, when you upsize, they’ll slow down the database
server for everybody.

Another great gotcha is finding a relationship
between two tables that have different sized fields. I
don’t seem to fall for this one very often, probably
because, when I have a field in one table that I want to
duplicate in another table, I copy and paste the common
field. Maintaining these relationships is inefficient and,
in SQL Server, forbidden. The error message that you’ll
get if you attempt to upsize a mismatched relationship
to SQL Server looks like this:

[Microsoft][ODBC SQL Server Driver][SQL Server]
Column 'myTable.sampleNumber' is not the same length
as referencing column 'mySecondTable.SampleNumber'
in foreign key 'MyTable_FK00'.

To fix the relationship, head to Access’ relationship
window, right-click on the join between the two tables,

and delete the relationship. Next, right-click on one of the
tables and switch into design mode. Now change the field
size to match the size in the other table, save the table,
and voilà!—you’ll be back in Access’ relationship window.
To complete the exercise, re-create the relationship
between the tables.

Automated detection
At this stage, you may be wondering if I can show you
some code that will identify these issues rather than
making you wade through your databases to find these
problems manually. I certainly can, and I’ll start with
some VBA that loops through all the tables. For each
table, I call two functions of mine: one that checks for
the existence of a primary key and another that verifies
that the fields used in a relationship are the same size in
both tables:

Dim i As Integer
Dim strTable As String
Dim varMsg As Variant

 For i = 1 To CurrentData.AllTables.Count
 strTable = CurrentData.AllTables(i - 1).Name
 If Left(strTable, 4) <> "msys" Then
 varMsg = checkPrimaryKey(strTable)
 If Not IsNull(varMsg) Then
 MsgBox varMsg & strTable
 End If

 varMsg = chkFKeyLength(strTable)
 If Not IsNull(varMsg) Then
 MsgBox varMsg & strTable
 End If

 End If
 Next i

Both of the functions that I wrote use the good old
DAO library to retrieve information about the tables.
I’ve recently become more upbeat about using DAO in
my applications, as it’s become obvious that ADO is never
going to replace DAO for managing Access databases
(this was confirmed for me when DAO reappeared in
the Access Help files in Access 2003).

Here’s the function that reviews all the indexes
for every table to see if any of them have the Primary
property value set to True. Passed a table name, the code
retrieves the definition of the table from the TableDefs
collection, and then loops through the table’s Indexes
collection looking for a key flagged as the Primary key:

Function checkPrimaryKey(tableReq As String) _
 As Variant
Dim dbData As DAO.Database
Dim tdf As DAO.TableDef
Dim idxLoop As DAO.Index

 checkPrimaryKey = Null
 Set dbData = CurrentDb
 dbData.TableDefs.Refresh

On Error Resume Next

tdf = dbData.TableDefs(tableReq)
For Each idxLoop In tdfLoop.Indexes
 If idxLoop.Primary = True Then
 GoTo checkPrimaryKey_exitFigure 1. The AutoIndex on creation option.

www.pinnaclepublishing.com 13Smart Access September 2004

 Exit Function
 End If
Next idxLoop
checkPrimaryKey = "No Primary key for table "

checkPrimaryKey_exit:
 Set dbData = Nothing

End Function

My next piece of code is the function that checks
the fields on both sides of a relationship to see if the
field size is the same. It does this by working through the
relationship objects in the database and verifying the field
size on both sides of the relationship. If a discrepancy is
found, the function returns a descriptive error:

Function chkFKeyLength(tableReq As String) _
 As Variant

Dim dbData As DAO.Database
Dim relLoop As DAO.Relation

Set dbData = CurrentDb

chkFKeyLength = Null

On Error Resume Next
dbData.Relations.Refresh

For Each relLoop In dbData.Relations

 With relLoop
 If tableReq = .Table Then
 If dbData.TableDefs(.Table) _
 (.Fields(0).Name).Size <> _
 dbData.TableDefs(.ForeignTable) _
 (.Fields(0).ForeignName).Size Then
 chkFKeyLength = "Different foreign key " & _
 "lengths between " & .Table & _
 " and foreign table " & .ForeignTable
 End If
 End If
 End With
Next relLoop

dbData.Close
Set dbData = Nothing

End Function

With those examples, you can see how you might
write code to test for upsizing issues that you commonly
encounter in your databases. But wait! There’s more that
you should check for.

Table gotchas
No matter what Access will let you do, all of your
tables should be named without any fancy characters or
spaces between parts of the name. Moving tables with
these kinds of names to any other database (including

Upsizing Issues
While my article focuses on poor practices (and highlights how

those practices create problems when upsizing your database),

in this sidebar I’m going to look at a variety of issues that occur

only during upsizing.

Before you wade into a SQL Server conversion project, you

really do need to sit down with a good book on the topic. In

fact, you’ll probably need to sit down with a few good books.

As an introduction to upgrading, I like Russell Sinclair’s book

From Access to SQL Server. I also like the book SQL: Access to

Access SQL, by Susan Harkins and Mike Reid, because it offers

some good insights into setting up SQL Server. The book also

offers lots of detail on Access and SQL Server query design,

which is good reading whether you’re converting or not. The

most comprehensive and up-to-date book is The Developer’s

Guide to SQL Server, by Andy Baron and Mary Chipman. This

book should probably be on your shelf. For those of you who

have the Enterprise Edition of Access Developer’s Handbook,

don’t forget to thumb through the book, as it has enough

information to get you off and running through those

troubling early stages of getting to know a new technology.

You should consider using a tool to help with your

conversion. At the time that I was writing this article, I was

putting together an Access wizard that will be available

as part of the tools sold from my Web site. For a more

comprehensive solution, you may want to try SSW Upsizing

PRO!, which Adam Cogan’s company sells at www.ssw.com.au.

This will give you a very detailed list of all the issues that you

will face. I recommend Adam’s tool to anyone who’s seriously

considering a larger upsizing project.

Tools do present their own special problems. For instance,

the SQL Server upsizing wizard can miss hidden tables when

doing a conversion. Finding out that you missed a whole

bunch of hidden tables late in a conversion project can be

a little embarrassing. Unhide tables before running any

automated tools.

Even if you use a tool, it would be surprising if your

conversion went right the first time. Make a copy of your

back-end database and run the conversion wizard to give you

a detailed list of all the issues.

When your conversion does succeed, you’re into a new

world. One of the key components of making a conversion to

an enterprise server work is to be sure that the correct skills are

onsite for when the conversion succeeds. There’s no doubt that

Access databases are easier to manage than SQL Server (for

instance, I can ask my clients to e-mail me a compressed copy

of an Access database for me to make enhancements to). SQL

Server databases require a more qualified technician with

administration access to the server to assist in maintaining

your new database server.

Microsoft has recently announced SQL Server Express, a

“lite” version of SQL Server. I recommend this package for

anyone contemplating this particular database engine.

14 www.pinnaclepublishing.comSmart Access September 2004

Microsoft’s own SQL Server) is going to make your
conversion more difficult. Even in Access, dealing with
table and field names with embedded spaces is awkward,
requiring you to enclose the name in square brackets.

From time to time, all Access developers will have
used a reserved word as a field name in a table or a query.
Once again, Access isn’t too harsh on the developer and
will frequently forgive these errors. But, as I stated before,
now is the time to sort out these anomalies before you
upsize to a more restrictive database. You should avoid
not only reserved words from the Access environment
but also reserved words from the server environment.
You even have to consider the reserved words used by
the ODBC environment if you intend to use links to the
server database tables. For more on Access reserved
words, head to www.utteraccess.com/forums/access/
access242075.html. For more on SQL Server and ODBC
reserved words, see http://msdn.microsoft.com/library/
en-us/tsqlref/ts_ra-rz_9oj7.asp?frame=true.

For one project that I worked on, there were
more than 50 tables that suffered from issues such as
reserved words or field names that didn’t follow safer
naming conventions. I considered using an Access
renaming tool like Speed Ferret or FindAndReplace but,
in the end, I took a simpler approach. I remembered that
the name of the table in the server/back-end database
must follow the correct naming convention. However,

HALF PAGE AD:

BLACK MOSHANNON

my method prevents the names from appearing to
change in the front-end database so my code doesn’t
need to change:

1. Open the back-end database.
2. From the Tools | Options menu, make sure all of

the Name Autocorrect options are turned off.
3. Rename the table from its current name to a

(slightly) different name that conforms to your
stricter naming conventions.

4. Fix up any issues with the field names in the
renamed table.

Continues on page 19

Figure 2. Setting up a query with field aliases to mimic the old
table nomenclature.

www.pinnaclepublishing.com 15Smart Access September 2004

Access Answers Smart Access

Working All Day
Doug Steele

This month, Doug Steele looks at calculating working days.

DateDiff computes how many days there are between two
dates, but I want to only consider working days. Is there an
easy way to ignore Saturdays and Sundays?

There are a number of ways to calculate this, some more
efficient than others. For instance, you can easily write a
function that loops through each day in the range, only
counting those that aren’t Saturday or Sunday.

Function CrudeWorkDayDiff(_
 DateFrom As Date , _
 DateTo As Date) As Long

Dim dtmCurr As Date
Dim intWeekday As Integer
Dim lngCount As Long

 dtmCurr = DateFrom
 Do While dtmCurr < DateTo
 intWeekday = Weekday(dtmCurr)
 If intWeekday <> vbSunday _
 And intWeekday <> vbSaturday Then
 lngCount = lngCount + 1
 End If
 dtmCurr = DateAdd("d", 1, dtmCurr)
 Loop

End Function

The problem with code like this, though, is that
it’s inefficient. It really isn’t necessary to look at every
single date in the range. It’s easy to determine how
many calendar days there are between two dates using
the DateDiff function. You can also use the DateDiff
function to determine how many weeks there are between
the two dates. Since you want to eliminate two days per
week, it should be simple arithmetic, shouldn’t it? You’d
expect to use code like this:

DateDiff("d", DateFrom, DateTo) - _
 2 * DateDiff("ww", DateFrom, DateTo)

Unfortunately, it isn’t that simple. There will be
problems with that calculation if the start or end date is
on a weekend.

Before I give the proper equation, I think it’s
important to understand how DateDiff works to calculate
weeks between two dates. There are actually two different
arguments you can pass to DateDiff that will calculate
weeks (“w”, for weekday and “ww”, for week). They work
differently, but they both return the number of weeks
between two dates—sort of.

If you use “w” as the interval parameter, DateDiff
looks at what weekday DateFrom is, and counts the
number of times that day occurs between DateFrom
and DateTo. It includes DateFrom in the count, but
not DateTo.

If you use “ww” as the interval parameter, DateDiff
counts calendar weeks by counting how many times
the first day of the week occurs between the two dates.
Note that there’s an optional fourth parameter that can
be provided to the DateDiff call to specify the first day
of the week. If you don’t specify, VBA assumes Sunday
is the first day. If you specify the same first day of the
week to the DateDiff function as the DateFrom’s day of
the week, the two calculations will be identical. In other
words, DateDiff(“w”, DateFrom, DateTo) will always
be the same as DateDiff(“ww”, DateFrom, DateTo,
Weekday(DateFrom)).

I think a visual aid may be in order. Take a look
at Figure 1, which shows a calendar indicating what
the days of the week are for the date range of 09 Sep,
2004 to 21 Sep, 2004. Ignoring DateFrom but including
DateTo, there’s one Thursday in the range; two each of
Friday, Saturday, Sunday, Monday, and Tuesday; and
one Wednesday.

Now look at Figure 2, which shows the differences
calculated by DateDiff for each of the possible values
for First Day of the Week. Those various numbers
correspond to what DateDiff(“ww”, DateFrom, DateTo,
vbxxx) returned (where xxx is replaced with the weekday
name, such as vbSunday, vbMonday, and so on). Note,
however, that the values calculated by both DateDiff(“d”,
DateFrom, DateTo, vbxxx) and DateDiff(“w”, DateFrom,
DateTo, vbxxx) don’t depend on the value of vbxxx.

20002000 20022002 20032003

Figure 1.
Date Range
09 Sep, 2004 to
21 Sep, 2004.

16 www.pinnaclepublishing.comSmart Access September 2004

Since I want to eliminate Saturdays and Sundays
from my calculations, I’m going to use DateDiff with the
“ww” interval, with vbSunday as the first day of the
week. DateDiff(“ww”, DateFrom, DateTo, vbSunday)
counts how many times Sunday falls between the two
dates, and I can work with that. (vbSunday is the default,
but I’m going to be explicit, just in case the user’s
preferences override the default.)

But knowing how many weekends occur in the
range isn’t enough to be able to accurately calculate the
weekdays. As I mentioned before, whether or not the
start or end date is on a weekend is important. With my
calculation, if the end date is a Saturday the calculation
will be too large by a day, unless the start date is also on a
Saturday. If the end date isn’t a Saturday but the start date
is, the calculation will come up short by a day. All other
combinations are fine.

Armed with this information, I can create the
following function that calculates the weekdays correctly:

Function WorkDayDiff(_
 DateFrom As Date , _
 DateTo As Date _
) As Long

 WorkDayDiff = DateDiff("d", DateFrom, DateTo) - _
 DateDiff("ww", DateFrom, DateTo, 1) * 2 - _
 IIf(Weekday(DateTo, 1) = 7, _
 IIf(Weekday(DateFrom, 1) = 7, 0, 1), _
 IIf(Weekday(DateFrom, 1) = 7, -1, 0))

End Function

In this code I’m using the actual values of the
constants vbSaturday and vbSunday (7 and 1,
respectively) in the function to save space (I’m limited
as to how many characters of code I can show on a
single line in this column!). What I’m really saying is
DateDiff(“ww”, DateFrom, DateTo, vbSunday) and
all of the Weekday comparisons are of the form
Weekday(DateValue, vbSunday) = vbSaturday.

The statement with the IIf function may be a
little confusing, so I’ll explain it in a bit more detail.

to add one to the rest of the calculation. If it isn’t, no
adjustment is necessary.

Some final comments: You don’t actually need to
create a function; you can put that ugly expression
in-line in your SQL query. If you do that, you must use
the numbers, as I did here, since the Jet engine doesn’t
know anything about the constants vbSunday and
vbSaturday. Putting the expression in the query itself
has the advantage that you can then use the query from
outside of Access. For example, if you have a Visual Basic
program, you can have the query defined in your MDB,
but use the query from your VB program. If the query has
a user-defined function in it, such as my WorkDayDiff
function, you can’t do that.

If you’re going to use a function and there’s a chance
that some of the dates you pass to the function might be
Null, then you should make the function’s arguments
Variants, not Dates. This is especially likely if you’re
going to use the function in a query, and some of the date
fields in the table might be Null.

Now I know how to eliminate weekends from my dates.
What about holidays?

Unfortunately, holidays can’t be excluded in such a
straightforward manner. First of all, there’s the fact that
holidays differ from country to country (or even state to
state or province to province). Then, some holidays fall
on specific dates (for example, January 1), some holidays
fall on specific days (such as First Monday in September),
and some have weird and wonderful formulae for their
calculation (for instance, Easter is the Sunday after the
Paschal Full Moon, where the Paschal Full Moon may
occur from March 21 through April 18, inclusive, so
that Easter is somewhere between March 22 through
April 25, inclusive).

I’ve always found that the easiest way to handle
holidays is to create a table of holidays in your database

Figure 2. DateDiff calculations for Date Range 09 Sep, 2004 to 21 Sep, 2004.

The syntax for the IIf function is
IIf(expr, truepart, falsepart), where
truepart is the value or expression
returned if expr is True, and falsepart
is the value or expression returned
if expr is False. I’m using the IIf
function to arrive at an adjustment
number that I’m going to subtract
from my other calculations. The
first check is whether DateTo is a
Saturday. If it is, I check whether
DateFrom is also a Saturday. If it
is, no adjustment is necessary. If it
isn’t, I need to subtract one from the
rest of the calculation. If DateTo isn’t
a Saturday, again I check whether
DateFrom is a Saturday. If it is, I need

www.pinnaclepublishing.com 17Smart Access September 2004

(yes, this means you need to include some means of
adding new holidays to your application). Once you have
such a table, deducting the holidays from your calculation
is as simple as determining how many holiday days occur
within the range.

In other words, if you have a table Holidays,
with primary key HolidayDate, you can figure out
how many holiday days occur in your date range with
this code:

DCount("*", "Holidays", _
 "HolidayDate Between " & _
 Format$(DateFrom, "\#mm\/dd\/yyyy\#") & _
 " And " & _
 Format$(DateTo, "\#mm\/dd\/yyyy\#"))

To do the same thing in SQL, you’d use this query:

SELECT Count(*)
FROM Holidays
WHERE HolidayDate Between DateFrom And DateTo

Incorporating this into my WorkDayDiff function
would look like this:

Function HolidayWorkDayDiff(_
 DateFrom As Date , _
 DateTo As Date _
) As Long

 WorkDayDiff = DateDiff("d", DateFrom, DateTo) - _
 DateDiff("ww", DateFrom, DateTo, 1) * 2 - _
 IIf(Weekday(DateTo, 1) = 7, _
 IIf(Weekday(DateFrom, 1) = 7, 0, 1), _
 IIf(Weekday(DateFrom, 1) = 7, -1, 0)) - _
 DCount("*", "Holidays", _
 "HolidayDate Between " & _
 Format$(DateFrom, "\#mm\/dd\/yyyy\#") & _
 " And " & _
 Format$(DateTo, "\#mm\/dd\/yyyy\#"))

End Function

Remember that if any dates in the Holidays table fall
on a Saturday or Sunday, they’re going to get double-
counted. You’d need to alter your DCount statement
accordingly if that’s a concern, like this:

DCount("*", "Holidays", _
 "HolidayDate Between " & _
 Format$(DateFrom, "\#mm\/dd\/yyyy\#") & _
 " And " & _
 Format$(DateTo, "\#mm\/dd\/yyyy\#") & _
 " And Weekday(HolidayDate, 1) <> 1 " & _
 " And Weekday(HolidayDate, 1) <> 7 ")

If you look in the accompanying database, you’ll see
I’ve actually added another field to the Holidays table,

Location, so that you can represent different holidays for
different locations.

Okay, I now have a replacement for DateDiff to compensate
for weekends and holidays. What about an equivalent
to DateAdd?

That’s a little bit more difficult, but it’s not impossible. As
before, I’ll start with the simpler case: only ignoring
weekends. First, if the given start date falls on a weekend,
then you want to start from the previous Friday. A little
trick I use is to use the Weekday function, but with a
FirstDayOfWeek value of Saturday. That means that
Saturdays will return a value of 1, and Sundays will
return a value of 2. If the Weekday is less than 3, you
need to subtract the weekday value from the date
(otherwise, add nothing to the date). The DateAdd
function, combined with an IIf statement, lets you do this:

DateAdd("d", _
 IIf(Weekday(DateFrom, vbSaturday) < 3, _
 0 – Weekday(DateFrom, vbSaturday), 0), _
 DateFrom)

Then, since you’re trying to ignore two days every
week, you can actually add a week to your start date for
every five working days you’re trying to add. Fortunately,
you can figure out the integer number of fives in a
number using the \ operator:

DateAdd("ww", _
 NumberOfDays \ 5,
 DateFrom)

Of course, you want to use the adjusted DateFrom
from Step 1, so the code actually looks like this:

DateAdd("ww", _
 NumberOfDays \ 5,
 DateAdd("d", _
 IIf(Weekday(DateFrom, vbSaturday) < 3, _
 0 – Weekday(DateFrom, vbSaturday), 0), _
 DateFrom))

Now, assuming that the number of working days
that you’re trying to add isn’t an exact multiple of five,
there’s a remainder of days left to add. The “trick” is
to determine whether adding those days will cross a
weekend day. If, for example, you’re trying to add days
to a Thursday, you know you can add one day and it
won’t be a weekend, but if you need to add two days,

Table 1. Adjustments required for remaining days.

Weekday Weekday Days to Add Max Days Weekday(..., vbSaturday)
1 2 3 4

Monday 1 2 3 4 4 3
Tuesday 1 2 3 6 3 4
Wednesday 1 2 5 6 2 5
Thursday 1 4 5 6 1 6
Friday 3 4 5 6 0 7

you’ll end up with a Saturday, so
you actually need to add four days
to take you to Monday. Hopefully
Table 1 illustrates the adjustment
that’s required.

In Table 1, the column Max Days
represents the maximum numbers of
days you can add to the day without
hitting a weekend day. The column

18 www.pinnaclepublishing.comSmart Access September 2004

Weekday(..., vbSaturday) shows the value returned
by the Weekday function when you use Saturday as
the FirstDayOfWeek. The formula 7 - Weekday(Date,
vbSaturday) gives you the same value as Max Days.
That means you need something like this code:

DateAdd("d", _
 Days + _
 IIf((Days + Weekday(Date, vbSaturday)) < 7, _
 0, 2), Date)

Recognizing that the remaining days can be
calculated as NumberOfDays Mod 5, the final formula is:

DateAdd("d", _
 NumberOfDays Mod 5 + _
 IIf((NumberOfDays + Weekday(Date, 7)) < 7, _
 0, 2), _
 DateAdd("ww", _
 NumberOfDays \ 5,
 DateAdd("d", _
 IIf(Weekday(DateFrom, 7) < 3, _
 0 – Weekday(DateFrom, 7), 0), _
 DateFrom)))

As before, I used 7 rather than vbSaturday in the
code in the interest of space.

To be honest, I haven’t found an easy way to include
holidays in the calculation. Just as you need to adjust
your starting day if it falls on a Saturday or Sunday, so
too do you need to adjust it if the starting day falls on
a holiday. Unfortunately, since you have no way of
knowing how many days you need to adjust by (you
could have two or three consecutive holiday days), that
means that you can’t simply use DateAdd in your
adjustment: You actually need to create a loop and
continue subtracting days until you’re finally on a non-
Weekend, non-Holiday day, like this:

Do While _
 Weekday(DateFrom, 1) = vbSaturday OR _
 Weekday(DateFrom, 1) = vbSunday OR _
 DCount("*", "Holidays", _
 "HolidayDate = " & _
 Format$(DateFrom, "\#mm\/dd\/yyyy\#")) = 1
 DateFrom = DateAdd("d", -1, DateFrom)
Loop

Once you’ve arrived at a proper starting date, you can

go through the same calculation as before. Once you’ve
arrived at a tentative date-to, you need to check whether
any holidays fall between one day after the original start
date (you’ve already compensated if the start date itself
was a holiday) and your tentative date-to. If there are any
holidays within that range, you need to adjust the date-to
accordingly. Unfortunately, you could be including yet
another holiday when you do that, so you need to loop
until no more holidays are found.

As you can see, that’s a rather difficult algorithm to
explain, and it’s messy to implement. As a result, I’ve
opted to use a variation of the crude approach I showed
originally. Yes, it means you have to loop through all of
the days, so the time it takes increases as the value for
NumberOfDays increases, but it has the advantage of
being understandable! Here’s the code:

Function CrudeWorkDayAddHoliday (_
 NumberOfDays As Long , _
 DateFrom As Date _
) As Date

Dim dtmCurr As Date
Dim lngCount As Long

 lngCount = 0
 dtmCurr = DateFrom
 Do While lngCount < NumberOfDays

 Do
 dtmCurr = DateAdd("d", 1, dtmCurr)
 Loop Until Weekday(dtmCurr, 7) >= 3 And _
 DCount("*", "Holidays", "HolidayDate = " & _
 Format$(dtmCurr, "\#mm\/dd\/yyyy\#")) = 0

 lngCount = lngCount + 1
 Loop

End Function

▲

409STEELE.ZIP at www.pinnaclepublishing.com

Doug Steele has worked with databases, both mainframe and PC, for

many years. Microsoft has recognized him as an Access MVP for his

contributions to the Microsoft-sponsored newsgroups. Check http://

I.Am/DougSteele for some Access information, as well as Access-related

links. He enjoys hearing from readers who have ideas for future columns,

though personal replies aren’t guaranteed. AccessHelp@rogers.com.

User Configuration...
Continued from page 4

 controlColor = !Color
 controlStyle = !Style
 End With
 rs.Close

 Me.labelFont = makeFontName
 Me.bkgdColor.BackColor = controlColor

 Me.ctrlStyle.SpecialEffect = controlStyle
 If controlStyle = 0 Then
 Me.ctrlStyle.BorderStyle = 0

 End If
 Me.ctrlStyle = makeStyleName
End Sub

After the code that closes the recordset it simply
sets the control properties as required. The only tricky
bit here is the SpecialEffect property. A bug in Access
sets the BorderStyle property to Heavy when you set
this property to 0 (Flat). The If statement in my code
handles this bug by resetting the property to 0 for a
fine border.

Because the sample form is only using each property

www.pinnaclepublishing.com 19Smart Access September 2004

Subscribe to Smart Access today and receive a special one-year introductory rate:
Just $129* for 12 issues (that’s $20 off the regular rate)

Pinnacle, A Division of Lawrence Ragan Communications, Inc. ▲ 800-493-4867 x.4209 or 312-960-4100 ▲ Fax 312-960-4106

NAME

COMPANY

ADDRESS

CITY STATE/PROVINCE ZIP/POSTAL CODE

COUNTRY IF OTHER THAN U.S.

E-MAIL

PHONE (IN CASE WE HAVE A QUESTION ABOUT YOUR ORDER)

Don’t miss another issue! Subscribe now and save!

❑ Check enclosed (payable to Pinnacle Publishing)

❑ Purchase order (in U.S. and Canada only); mail or fax copy

❑ Bill me later

❑ Credit card: __ VISA __MasterCard __American Express

CARD NUMBER EXP. DATE

SIGNATURE (REQUIRED FOR CARD ORDERS)

* Outside the U.S. add $30. Orders payable in
U.S. funds drawn on a U.S. or Canadian bank.

Detach and return to:
Pinnacle Publishing ▲ 316 N. Michigan Ave. ▲ Chicago, IL 60601
Or fax to 312-960-4106

409INS

in the table to set a single property of a single control, the
sample procedure does this explicitly:

Me.bkgdColor.BackColor = controlColor

Alternatively, you could loop through the Controls
collection of the Form to set the appropriate property for
all controls of the correct type, but the basic procedure
would remain the same. You can use a control’s
ControlType property to determine what kind of control
you’ve retrieved from the Controls collection.

None of the procedures that I’ve shown you this
month are particularly difficult technically—opening
dialog boxes, loading and restoring values from a table,
and setting control properties at runtime are all standard

stuff. The real cost of providing this functionality is first in
the analysis: deciding what characteristics ought to be
configurable by the user and how they can best be stored.
That cost is fairly minimal, so consider providing this
functionality in your next system. It doesn’t always make
sense, but it’s always worth considering. ▲

409RIORDAN.ZIP at www.pinnaclepublishing.com

Rebecca M. Riordan is an author, systems architect, Microsoft MVP, and

a darn good cook. Her current projects include an Access VBA, a book

on designing user interfaces for database applications implemented

with .NET, to be published by Addison-Wesley, and a book on low-

carbohydrate baking that’s currently looking for a publisher.

rebeccamarye@msn.com.

Know a clever shortcut? Have an idea for an article for Smart Access?
Visit www.pinnaclepublishing.com and click on “Write For Us” to submit your ideas.

5. Open the front-end database and delete the link
to the old table.

6. Create a new link to the renamed table.
7. Create a new query that has exactly the same name

as the original table.

8. Add the renamed table to the query.
9. Add all of the fields from the table to the query.
10. Where a field has been renamed, create an alias for

the field that matches the old field name.

In Figure 2 (on page 14), I demonstrate how I’ve set
up a field alias for a couple of fields in a query so that the
query now mimics the old naming conventions. I’m not

Access Traps...
Continued from page 14

20 www.pinnaclepublishing.comSmart Access September 2004

September 2004 Downloads

For access to current and archive content and source code, log in at www.pinnaclepublishing.com.

Smart Access (ISSN 1066-7911)
is published monthly (12 times per year) by:

Pinnacle Publishing
A Division of Lawrence Ragan Communications, Inc.

316 N. Michigan Ave., Suite 300
Chicago, IL 60601

POSTMASTER: Send address changes to Lawrence Ragan Communications, Inc., 316
N. Michigan Ave., Suite 300, Chicago, IL 60601.

Copyright © 2004 by Lawrence Ragan Communications, Inc. All rights reserved. No part
of this periodical may be used or reproduced in any fashion whatsoever (except in the
case of brief quotations embodied in critical articles and reviews) without the prior
written consent of Lawrence Ragan Communications, Inc. Printed in the United States
of America.

Brand and product names are trademarks or registered trademarks of their respective
holders. Microsoft is a registered trademark of Microsoft Corporation. Microsoft Access is a
registered trademark of Microsoft Corporation. Smart Access is an independent publication
not affiliated with Microsoft Corporation. Microsoft Corporation is not responsible in any
way for the editorial policy or other contents of the publication.

This publication is intended as a general guide. It covers a highly technical and complex
subject and should not be used for making decisions concerning specific products or
applications. This publication is sold as is, without warranty of any kind, either express or
implied, respecting the contents of this publication, including but not limited to implied
warranties for the publication, quality, performance, merchantability, or fitness for any
particular purpose. Lawrence Ragan Communications, Inc, shall not be liable to the purchaser
or any other person or entity with respect to any liability, loss, or damage caused or alleged
to be caused directly or indirectly by this publication. Articles published in Smart Access do
not necessarily reflect the viewpoint of Lawrence Ragan Communications, Inc. Inclusion of
advertising inserts does not constitute an endorsement by Lawrence Ragan Communications,
Inc., or Smart Access.

Questions?

Customer Service:
Phone: 800-493-4867 x.4209 or 312-960-4100
Fax: 312-960-4106
Email: PinPub@Ragan.com

Advertising: RogerS@Ragan.com

Editorial: FarionG@Ragan.com

Pinnacle Web Site: www.pinnaclepublishing.com

Subscription rates

United States: One year (12 issues): $149; two years (24 issues): $258
Other:* One year: $179; two years: $318

Single issue rate:
$20 ($25 outside United States)*

* Funds must be in U.S. currency.

Editor: Peter Vogel (peter.vogel@phvis.com)
Contributing Editors: Mike Gunderloy, Danny J. Lesandrini,

Garry Robinson, Russell Sinclair
CEO & Publisher: Mark Ragan

Group Publisher: Michael King
Executive Editor: Farion Grove

suggesting that you shouldn’t fix these unfortunate
names. But the good thing about my approach is that it
quickly resolves the issues in your back-end database
by isolating those issues in your front end. You can
more easily fix and test these issues in your front-end
database—and do it after the hurly-burly of the back-end
conversion has been completed.

Access tries so hard to be helpful, it seems almost
cruel to criticize the results. However, if you accept the
results of the Access “helpers” without thought, you
won’t be following the “best practices” for a professional
database design. While Access may let you get away
with these problems, it’s only a matter of time until these

deficiencies rise up and bite you—and converting to an
enterprise database is just one of those times. ▲

409ROBINSON.ZIP at www.pinnaclepublishing.com

Garry Robinson runs GR-FX Pty Limited, a company based in Sydney,

Australia. If you want to keep up-to-date with his latest postings on

Access issues, visit his company’s popular Web site at www.vb123.com

or sign up for his Access e-mail newsletter by sending a blank e-mail

to tips@vb123.com. The Web site features many Access resources and

software that are used by more than 10,000 readers per month. To find

out about Garry’s book, Real World Microsoft Access Database Protection

and Security, point your browser to www.vb123.com/map. You can find

Garry’s contact details at www.gr-fx.com.

• 409RIORDAN.ZIP—The sample database that Rebecca

Riordan has provided demonstrates how easy it is to set

up your Access application so that your users can customize

the user interface. Rebecca’s example builds from the

setting available in the Windows Control Panel to allow for

additional customization.

• 409DOBSON.ZIP—Rick Dobson’s sample database shows

how to use Access as a center for mailing out notices to

your customers and clients. Methods that you can use

include integrating with Access or using the CDO objects

that come with Office. Rick’s code also demonstrates

how to customize the content of your e-mail message

using keywords.

• 409STEELE.ZIP—In this month’s “Access Answers” column,

Doug Steele demonstrates, first, how a simple date-

related problem (workdays in a period) can have

hidden traps—and then how a smart solution makes it

simple again.

