
http://www.smartaccessnewsletter.com 7Smart Access March 2002

Smart Access

Access Efficiency
Peter Vogel 20002000 20022002

Here, Peter Vogel looks at the single most important
change that you can make to your applications to make
them run faster. It’s also the one mistake that gets made
the most often.

I would say that most of my Access consulting work
comes from clients who have applications that are
running too slowly. So far, in every case where I’ve

been brought in, I’ve been able to significantly improve
the speed of the application. One of the reasons that
I’ve been so successful is that most of my clients have
made the same mistake: They’re retrieving too much
data. I’d say that was the reason for every client, but
my memory isn’t what it should be, and there’s the
possibility that I’ve forgotten the one exception to this
rule. This is the first area that you should concentrate
on when trying to speed up your application.

I know that this isn’t what you hear from experts
when it comes to improving performance. Experts will
tell you to make better use of indexes, use SQL in place
of recordset processing, convert SQL statements in your
code to queries in your database, and so on. In fact, I’ve
provided that advice myself on more than one occasion.
But these aren’t fundamental improvements.

For instance, as I pointed out in last month’s
Working SQL column (“Efficient SQL”), indexes are
often ignored by the DBMS when processing data. As
far as storing your SQL statements as queries—yes, that
does save you the cost of compiling your query when
you execute it. Quite frankly, however, the compile time
for most of the queries that you’re using (especially the
ones in your Recordsource properties) is probably so
small that you can’t see the improvement.

While all of these tips are good advice and well
worth following, they aren’t fundamental to making
your application run faster. At the risk of giving up a
good part of my consulting practice, here’s the real
secret to getting your application to run faster: Get
less data.

The typical mistake
There are specific cases when developers retrieve too
much data. I was asked to review one application that
ran for four hours, used two tape drives, and generated
temporary work files that filled two disk drives.
Looking at the program, I discovered that it retrieved a

row from a table, then retrieved some related rows from
another table, then retrieved some rows from a third
table that were related to the rows from the second
table. The application then went back and got the next
row from the very first table and repeated the process.
After every row in the first table was processed, the
application looked at the data that it had retrieved. It
began this second pass by checking a field from the first
table and discarding all the rows from all the related
tables, based on that value. About 75 percent of the
extracted data was thrown away in the second pass.

I rewrote the program to check the field in the first
table before retrieving any other data. When I was
done, the application ran in 90 minutes and used one
small work file. Obviously, this is a special case, and
there’s not much in general rules that you can draw
from this. Moving into Access, however, there are some
common failures that you can guard against.

The most common mistake that I see developers
make when retrieving too much data is using what I’ll
call an “unrestricted SQL query” in the Recordsource
property of a form. An unrestricted SQL query is one
that retrieves every row in a table (or most of them).
The extreme form of an unrestricted query is just a
table name. Equally guilty of the crime of retrieving too
much data (and slowing down an application) is the
SQL statement with no Where clause.

The opposite of an unrestricted query is what I call
a “targeted SQL query.” A targeted SQL query has a
Where clause that, ideally, retrieves a single row from a
table using the table’s primary key. Targeted SQL
statements aren’t restricted to retrieving a single row.
They do always contain Where clauses that carefully
restrict the number of rows to retrieve.

A distant second to the unrestricted query is the
“broadband query.” A broadband query retrieves more
fields than are necessary. However, the performance
impact on your application that’s inflicted by a
broadband query is much less than the impact of an
unrestricted SQL query. In this month’s Download file
(available at www.smartaccessnewsletter.com), you’ll
find an Access database that demonstrates the
difference in speed between unrestricted, targeted, and
broadband queries.

One of the ways that developers end up with this
problem is by binding a form to a table. The form, of

gaz
Typewritten text
Downloads www.vb123.com.au

8 http://www.smartaccessnewsletter.comSmart Access March 2002

course, then displays all of the rows in that table.
However, it’s unlikely that the developer ’s users really
want to see all the rows in the table. With a form that’s
bound to a table as a whole, developers typically use
the form’s Filter property to restrict the records to be
displayed to the user. In this design, a form typically
includes a drop-down list that lets users select which
rows they want to see. The code behind this drop-down
list sets the Filter property of the form in order to
restrict the display of the data to the row(s) that the
user actually wants.

There’s lots that’s wrong with this approach. To
begin with, the users must wait for every row to be
loaded before they can even select which row they
want. After entering the criteria for the row that they
really want, users must then wait while the enormous
recordset retrieved when the form was loaded is
reduced to just the few records actually desired.
Fortunately, because the recordset is probably being
held in memory, this filtering process goes quickly.

I’ve had developers explain to me that this is the
only approach that they can take. Since the developer
doesn’t know, for instance, which customer a user will
want to see, the developer’s only alternative is to
retrieve all the customer rows and then let the user
select one. Of course, this means that when the form is

opened, the user is presented with the first customer
in the list, which is almost certainly not the one that
they want.

The solution
A better design is to present the users with an empty
form and let them select the row that they want. Based
on the data that the user enters, you can then retrieve
exactly what the customer wants. The form loads faster
initially, and the users wait only to retrieve the data
that they want.

Is there a cost here? Yes, of course. If a user brings
up a customer row, then asks for another customer, and
then another, it’s possible that the total wait time for
four or five retrievals of individual rows will be greater
than the wait time to load all the rows. I suspect that
you’ll find, however, that the application that loads
quickly and takes a minimal amount of time between
rows is perceived to be faster than an application that
takes a long time to load but moves more quickly
between rows.

It’s also a mistake to think that if you retrieve all
the rows when opening your form it will make moving
between those rows free. If the users are making
updates, the users will have to wait as they leave each
row to send their updates back to the server. Unless

Jet vs. SQL Server
Getting too much data is a problem with both Jet and SQL

Server back ends. However, if you’re retrieving too much data

on some of your forms with Jet and then switch over to SQL

Server, you’ll probably notice that the problem gets worse. To

understand why, you need to look at where your data is

processed with the two DBMSs.

With Jet, every user gets his or her own copy of the database

engine: Jet runs on each user’s computer. Since your data is

probably kept in an MDB file on a network server, this means that

all of the data must be brought to the user’s computer in order to

be processed by the database engine. If you issue a request for

the customers who live in New York, then all of the customer

records must be brought to the user’s computer to be examined

so that the non-New York customer records can be discarded. If

there’s an index on the appropriate field, Jet may just retrieve

the index and use that to determine which rows to retrieve.

Once the index is processed, though, Jet must issue a series of

requests back to the file server with the MDB file to get the

matching rows.

With SQL Server (or any other client/server database), all

that goes up to the database server is the SQL statement. All

that comes back is the record(s) that you asked for. If you ask

for all the customers who live in New York, the processing

of the records happens on the database server, and only the

requested records come back to the user’s computer. Since the

database engine is probably running on the same computer

as the hard disk holding the data file, this processing can be

very fast.

If SQL Server is so fast, why does the problem of retrieving

too much data get worse when working with SQL Server? The

answer is that, with Jet, all the records have to be brought down

to the user’s computer anyway. If you request too many records,

the impact is reduced because all of the records are on the client

computer. The difference between targeted and unrestricted

queries is reduced.

On the other hand, with SQL Server, if you bring too

many records down to the client, you’re throwing away the

major advantage of using a server database. Instead of sending

up a single SQL statement and getting back the records that

you want, you’re clogging the network with unnecessary data.

Users notice that some forms take a very long time to load

(unrestricted SQL queries), and some forms load very quickly

(targeted SQL queries). With Jet, they may not notice the

difference because of the way that the data is processed.

http://www.smartaccessnewsletter.com 9Smart Access March 2002

the users are going to process a series of rows in the
order that they were retrieved, they’ll either have to
enter the data to filter the recordset down to the row
they want or scroll through the data to find the row
they want.

Using unrestricted queries
Unless there’s a compelling reason, you should never
use unrestricted queries. Compelling reasons include:

• Filling list boxes and drop-down lists—If you have
many of these objects on your form, then it
probably explains why your form takes so long
to load.

• The user needs to see a list of data in order to see the
data in context—In a scheduling application, for
instance, users may want to see appointments
before and after the one they’re interested in.
You still don’t want to retrieve every row in the
table, though.

• The user actually intends to scroll through almost every
row in a table—This is very unlikely.

The only other occasion that I feel justifies using
unrestricted queries and the Filter property is for data
analysis applications. In these kinds of applications,
users retrieve a large amount of data and then spend
their time resorting and filtering it in order to analyze
the data. This is the best use for the Filter property.

The key thing to notice here is that it all comes back
to the user ’s intention. You may feel that you’re
providing the user with extra functionality by using an
unrestricted query in your Recordsource. You may even
tell your users, “Now you can scroll through all the
data if you want.” But if the users have no intention or
desire to use that feature, you’re just slowing them
down and providing no benefit at all.

This attitude of checking with your users even
applies to drop-down lists. Before you bind the 12th
list box on the form to your States table, check to see
whether your users really need a list box with the
names of the states. Yes, your users may enter a bad
state name, but it’s not going to happen very often. By
putting that bound drop-down list on your form, you’re
slowing down every user, every time he or she uses
your form in order to prevent a problem that occurs
very infrequently. If you assume that your users know
their state names, it might be faster for them if you just
provide a text box with some editing code behind it
that checks that the state name is accurate. I strongly
suspect that no one searches through a 52-state list to
find “Wyoming,” anyway.

Implementing targets
So, how do you implement targeted queries? As I’ve
already suggested, the first step is to present the users

with a form that lets them ask for the data they’re
actually interested in. This form will have a blank
Recordsource property to prevent it from retrieving
any data at all. Once the users enter their criteria, you
can generate and set the Recordsource from your code,
like this:

Set Me.Recordsource = "Select * From Customers " & _
 "Where CustId = '" & Me.txtCustId & "'"

This is the least efficient solution because the Jet
database engine will be passed a raw SQL statement
that it will have to parse, check, compile, and optimize
before executing. However, as I said before, this is
probably not an expensive proposition, especially when
compared to using an unrestricted query. A more
efficient solution is to use a parameterized query and
just set the query’s parameters before calling it.

With SQL Server, as I discuss in the sidebar (“Jet
vs. SQL Server,” on page 8), having some forms with
unrestricted queries and others with targeted queries
can create greater disparities in runtime than the same
code with a Jet database. Fortunately, with SQL Server
and Access ADPs, you do have one property that
can reduce the impact of unrestricted queries: Server
filter. This property is applied to your unrestricted
Recordsource on the server, reducing the data brought

Continues on page 20

20 http://www.smartaccessnewsletter.comSmart Access March 2002

users and permissions using DAO, ADOX, and DDL
SQL scripts.

Several chapters are devoted to working with SQL
Server. The information included is sufficient to help an
Access developer get started with SQL Server. Enough
basic training is provided to show you how to create
database objects such as tables, views, stored procs, and
the like. Though a brief T-SQL tutorial is provided, if
you plan to do anything fancy, you’ll want to invest in
a good book on SQL Server.

The last set of chapters deals with creating a Web
interface for your Microsoft Access applications. Data
Access Pages (DAPs) were first introduced in Access
2000 to help developers create Web pages for
displaying and editing your Access data. Deploying
DAPs was problematic in Access 2000, but, according to
the ADH, the Access 2002 version is much more mature.
In addition to explaining how to use the Access user
interface to create deployable DAPs, the book includes
a tutorial on creating basic ASP pages, even touching

down to the client. However, it’s probably just as
easy to reset the Recordsource as to reset the Server
filter property.

So what should you do? First, if a form’s response
time is good enough, leave it alone! You have enough to
do. Where there’s a problem, stay away from the Filter
property unless you absolutely need it. If you have a
poorly performing form, make these changes:

1. Delete the entry in the form’s Recordsource
property.

2. Add a constant to your form that holds the SQL
equivalent to the old Recordsource property.

 Const strOldRecordSource As String = _
 "Select * From Customers"

3. Wherever your code uses the Filter property,
replace that code with code that updates the
Recordsource property with your constant and the
string that you used to put in the Filter:

 Me.Filter = strOldRecordSource & " Where " & _
 "…old text for the Filter property…"

If the original Recordsource already
contained a Where clause, then you’ll need to
use this code:

 Me.Filter = strOldRecordSource & " And " & _

Access Efficiency...
Continued from page 9

 "…old text for the Filter property…"

4. If you’re using the Where parameter in the
DoCmd.OpenForm method, move that parameter’s
entry to the OpenForm’s last parameter (the
OpenArgs parameter). In the Form_Load event
update the Recordsource:

 Me.Filter = strOldRecordSource & " And " & _
 Me.OpenArgs

Alternatively, you could call me in to consult. My
rates are very reasonable. In fact, call me in anyway—
that way, you’ll have someone to blame if this doesn’t
work out. ▲

ACCEFF.ZIP at www.smartacessnewsletter.com

Peter Vogel (MBA, MCSD) is the editor of Smart Access and a principal in

PH&V Information Services. PH&V specializes in system design and

development for systems that use Microsoft technologies. Peter has

designed, built, and installed intranet and component-based systems for

Bayer AG, Exxon, Christie Digital, and the Canadian Imperial Bank of

Commerce. He’s also the editor of Pinnacle’s XML Developer newsletter

and wrote The Visual Basic Object and Component Handbook (Prentice

Hall, currently being revised for .NET). In addition to teaching for

Learning Tree International, Peter wrote its Web application

development, ASP.NET, and technical writing courses, along with being

technical editor of its COM+ course. His articles have appeared in every

major magazine devoted to VB-based development, can be found in the

Microsoft Developer Network libraries, and will be included in Visual

Studio .NET. Peter also presents at conferences around the world.

peter.vogel@phvis.com.

on the new ASP.NET technology. One complaint: The
chapter on integrating XML with Access 2002 covers all
the technical aspects of importing and exporting data
but lacks real-life scenarios where you might want to
use this technology.

I usually like to end book reviews with a “What’s
the verdict?” section, but that question just doesn’t
apply to the Access Developer’s Handbook. It’s not a
question of whether or not the book is a great value.
There really is something for everyone in the Access
2002 Developer’s Handbook. How much you personally
can expect to leverage from these volumes depends on
how much you may already know. For the serious
Access developer, these books are a must-have. ▲

Danny J. Lesandrini, a Microsoft Certified Professional in Access, Visual

Basic, and SQL Server, has been programming with Microsoft Access

since 1995. He maintains a Web site containing Access-related code

solutions at http://datafast.cjb.net and replies to all questions and

comments sent to him via e-mail. datafast@attbi.com.

