
8 www.pinnaclepublishing.comSmart Access April 2006

Access Answers Smart Access

Surf’s Up! Parsing Web Data
Doug Steele

This month, Doug gets some questions that send him back to
an earlier topic: linking your Access application into data on
the Internet.

How can I get information from the Internet into my app?

Back in November 2003, I wrote about how to use the
XMLHTTP object to get information from a Web site.
However, after getting more information from the reader
who posed the original question, it turns out that approach
isn’t really appropriate in his case. Among other issues,
my technique assumed that you know the URL that the
information will be coming from. The reader who raised
the questions is a librarian who wanted to be able to get
information about books from the Library of Congress
Online Catalog at www.loc.gov/cgi-bin/zgate. However,
he needed to be able to interact with the Web page to
ensure that the correct book was found. This would have
been rather awkward with the technique I showed.

Fortunately, though, there is a solution, as long as
you’re using Access 2000 or newer. If Internet Explorer is
installed on your computer, then you should also have a
Microsoft Web Browser control available for you to use on
your form. To test this out, create a new form and, while
you’re in Design mode, select ActiveX Control from the
Insert menu.

Now scroll through the list of available controls until
you find the entry for Microsoft Web Browser. Select it,
click the OK button, and a new control will appear on
your form.

As a check that you have the right control, the new
control will have a name along the lines of WebBrowser0.
In the code that follows, I’ve renamed the control to
ocxWebBrowser.

Using the control is simple: Invoke the Navigate
method, passing a URL, and your page appears! In the
sample database that accompanies this article, I’ve put a
textbox named txtURL on the form, as well as a button
named cmdGo that will navigate to the URL contained in
the textbox. The complete code for the Click event of the
command button is:

 If Len(Me.txtURL) > 0 Then
 Me.ocxWebBrowser.Navigate Me.txtURL
 End If

Assuming that I’ve got the URL given above in the
textbox, clicking on cmdGo takes me to the Z39.50
Gateway to the Library Of Congress Online Catalog.

How do I use the Web Browser?

You use what’s in the Web Browser control exactly the
same as you would any other Web browser: You fill in
textboxes, select controls, and use the Web page’s
navigation methods.

As I mentioned at the start of this column, the
original request was to use the search feature at the
Web site above to get information about books into his
application. Now, I happen to know that our editor, Peter
Vogel, has authored a few books, so I can use them as a
test case.

If I change the search type from the default Title to
Author, enter Vogel, Peter as the search term, and then
click on the Submit Query button, a page returns telling
me that a total of 18 books were found. Of course, not all
of them are by our Peter, but if I scroll through the list, I
find several that he was Editor for, as well as several that
he authored. Figure 1 shows the details of two of the
books he authored. At this point, you’ve given your users
the ability—without leaving Access—to interact with
some Web page that you display to them. Which leads to
our reader’s next question.

How do I get the information from the Web Browser control
into my application?

20002000 20022002 20032003

Figure 1. Details of some books authored by Peter Vogel.

gaz
Typewritten text
Downloads
www.vb123.com.au

www.pinnaclepublishing.com 9Smart Access April 2006

Here’s where you need to know a little bit about how Web
pages are built. In their simplest form, Web pages use
HTML, and the browser converts that HTML to what you
see. There’s a Document Object Model defined that lets
you work with the HTML associated with a Web page, but
delving into it in any detail is far beyond the scope of this
article. (If you want more information, a good place to
start is at the World Wide Web Consortium’s [W3C’s] Web
site, specifically at http://www.w3.org/TR/WD-DOM,
or in the Web Development section of Microsoft’s MSDN,
say at http://msdn.microsoft.com/workshop/author/
dhtml/dhtml_node_entry.asp.)

In a nutshell, you can access the details of what’s
being displayed in the Web Browser control by looking at
its Document property. To refer to the root node of the
document, you access its documentElement property. To
be able to get the HTML associated with what’s in the
Web Browser control, you refer to the innerHTML
property of the documentElement, like this:

ocxWebBrowser.Document.documentElement.innerHTML

However, unless you have a real need to work with
the HTML (say, to help you find a specific part of the
Web page), you’re probably better off working with the
innerText property with code like this:

ocxWebBrowser.Document.documentElement.innerText

Unfortunately, I can’t give you any hard-and-fast
rules for how to get what you want out of the Web page.
I’ll work through my example, continuing to use the
Library of Congress page, and hopefully that will give
you a feel for how to use it in your situation. I’d suggest
you actually go to the Library of Congress Online Catalog
to see what I’m talking about in action.

While it’s possible to have users select the text they
want on the page, right-click on it, and copy a selection
to the clipboard, I didn’t feel that gives developers
enough control over what data is being transferred to the
application. I decided to take the contents of the innerText
property for the page and display it in a textbox. I also
added a tab control to my form to separate the Web
Browser control from the text extracted from the page.
Now, once the user has found the correct book, he or she
clicks on the Show Text button and I switch to the tab
with the text from the Web Browser control.

To illustrate how to take the information that’s
returned by the Web Browser control and integrate it into
an Access application, I added some textboxes onto my
form to simulate an application. If you look at the results
from the search on the Web, you’ll see that there are
normally four pieces of information returned by the
Library of Congress page: the Author and Title, the
Publishing information, and the Library of Congress Call
Number. I added four textboxes to my form, as shown in
Figure 2. (My sample form is unbound, and I’m not storing

the data in a table, but that’s a fairly straightforward
extension that I won’t bother demonstrating.)

The approach I took to the application was to allow
the user to highlight the details for the specific book in
which he was interested, click a button, and have the
highlighted information transferred to the appropriate
textboxes. To do this, I took advantage of the fact that
textbox controls have three properties associated with
what’s currently selected in them. The SelStart property
indicates the position of the first character selected, the
SelLength property indicates how many characters are
selected, and the SelText property represents the actual
text selected. However, these three properties are only
available for use when the textbox has focus. Since I’m
making the user click a button when the appropriate
text has been selected, I had to cheat a little. First, I
declared three module-level variables at the beginning
of the module:

Dim mlngSelStart As Long
Dim mlngSelLength As Long
Dim mstrSelText As String

I populated them in the textbox’s LostFocus event,
which will have to fire as the user switches from the
textbox to the button:

Private Sub txtText_LostFocus()

 mlngSelLength = Me.txtText.SelLength
 mlngSelStart = Me.txtText.SelStart
 mstrSelText = Me.txtText.SelText

End Sub

As you’ll see, I don’t need the SelStart and SelLength
properties. I included the code to show how to access
the properties.

Now, in the Click event of the button, I’m able to refer
to the selected text and parse it so that I can populate the
individual fields on my form. Unfortunately, the data
wasn’t perfect for what I wanted to do: As is illustrated
here, some of the values returned by the search span more
than one line of text:

Author: Vogel, Peter, 1953-
Title: The Visual Basic object and component
 handbook / Peter Vogel.
Published: Upper Saddle River, NJ : Prentice Hall, 2000.
LC Call No.: QA76.73.B3V63 2000

Another thing to point out is that some of the entries

Figure 2.
Textboxes to
hold information
parsed from the
Web page.

10 www.pinnaclepublishing.comSmart Access April 2006

(such as books Peter edited) don’t have all four fields
defined—principally, the author entry is missing:

Title: Experts on Access : the best from
 Smart Access / [editor, Peter Vogel.]
Published: Marietta, GA : Pinnacle Pub., c1998.
LC Call No.: QA76.9.D3E985 1998

And, to make matters more interesting, some entries
have more than the four fields:

Author: Vogel, Peter, 1953-
Title: Professional Web parts and custom
 controls with ASP.NET 2.0 / Peter Vogel
Published: Indianapolis, IN : Wiley Technology
 Pub. , 2005.
LC Call No.: TK5105.8885.A26V64 2005
Access: Table of contents
 Location: http://www.loc.gov/catdir/toc/ecip0516
 /2005021557.html

To handle these entries, I developed some custom
parsing logic. I split the selected text into individual lines
and look at the first 15 characters of each line. If there’s
text there (or, more accurately, if there’s a colon there), I
save whatever precedes the colon as strEntryType, and
save what comes after the colon as strEntryValue. If
there’s no colon, I assume that the current line is a
continuation of the previous line, and append the text to
the current strEntryValue. I use strEntryType to decide
what kind of data I have in strEntryValue. I use a Select
Case statement that recognizes the four strEntryTypes that
I’m interested in (Author, Title, Published, and LC Call
No.) and just ignore any other entries.

The code is a little convoluted, primarily because I
can’t be sure that I’ve found a complete entry until I find
a colon in the first 15 positions of the next line. In other
words, once I find a colon, I know that I’ve already found
the end of my current set of data and have just found the
strEntryType for the next set of data that I’ll read. I need
to move my strEntryValue into the textbox specified by
the previous strEntryType that I read and then set
strEntryType to the data that I just read.

The code begins by declaring the variables that
I’ll need:

Private Sub cmdCopy_Click()

Dim intChar As Integer
Dim intLoop As Integer
Dim intColon As Integer
Dim strEntryType As String
Dim strEntryValue As String
Dim varSelect As Variant

I then Initialize my four textboxes to nothing:

 Me.txtAuthor = vbNullString
 Me.txtTitle = vbNullString
 Me.txtPublished = vbNullString
 Me.txtLCCallNumber = vbNullString

I use the Split function (with the delimiter set to
vbCrLf) to divide the selected text into separate lines and

place them in an array:

 varSelect = Split(mstrSelText, vbCrLf)

One warning: This code works because the text is
split using the standard Carriage Return/Line Feed
combination. You need to check the specific Web
page you’re dealing with to make sure this is the case
for you.

I need to ensure that strEntryType is empty before I
start so that I don’t place the first line of text into a textbox
before determining whether the text continues on the next
line. My logic checks to see if there’s a colon in the first
15 positions and, if there is, writes what’s currently in
strEntryValue to the appropriate textbox. If there isn’t a
colon, I append what’s in the line to whatever’s already
in strEntryValue:

 strEntryType = vbNullString
 For intLoop = LBound(varSelect) To _
 UBound(varSelect)
 intColon = InStr(varSelect(intLoop), ":")
 If intColon > 1 And intColon < 16 Then
 Select Case strEntryType
 Case "Author"
 Me.txtAuthor = strEntryValue
 Case "Title"
 Me.txtTitle = strEntryValue
 Case "Published"
 Me.txtPublished = strEntryValue
 Case "LC Call No."
 Me.txtLCCallNumber = strEntryValue
 Case Else
 End Select
 strEntryType = _
 Trim$(Left$(varSelect(intLoop), _
 intColon - 1))
 strEntryValue = _
 Trim$(Mid$(varSelect(intLoop), _
 intColon + 1))
 Else
 strEntryValue = strEntryValue & " " & _
 Trim$(varSelect(intLoop))
 End If
 Next intLoop

Now that I’ve read all the lines of data, I may still
have the last line of data to write (depending on what the
value of strEntryType is). This code handles that case:

 Select Case strEntryType
 Case "Author"
 Me.txtAuthor = strEntryValue
 Case "Title"
 Me.txtTitle = strEntryValue
 Case "Published"
 Me.txtPublished = strEntryValue
 Case "LC Call No."
 Me.txtLCCallNumber = strEntryValue
 Case Else
 End Select

Finally, once I’ve populated the textboxes, I set
focus to the tab in my tab control that actually holds
the textboxes:

 Me.pagDetails.SetFocus

End Sub

As always, parsing text files (or HTML) leads to non-

www.pinnaclepublishing.com 11Smart Access April 2006

generic solutions and lots of custom code. There’s also the
possibility that the Web site from which you’re getting
your information will change its layout, forcing you to
rewrite your parsing routine. However, if you’re willing
to live with those limitations, parsing a Web site’s
innerText property can be a useful technique. For more
information about the Web Browser control, see http://
msdn.microsoft.com/workshop/browser/webbrowser/
browser_control_node_entry.asp.

My reader had one final question, though.

Why is this solution limited to Access 2000 and newer?

Unfortunately, Internet Explorer 4.0 broke Access 97’s
ability to use the Web Browser control. If you try to use it

in Access 97 (even if it’s a converted database from
Access 2000 or newer), you’ll get a “There Is No Object
in This Control” error. There’s a KB article documenting
this at http://support.microsoft.com/?id=177105, but
unfortunately there’s no workaround. ▲

604STEELE.ZIP at www.pinnaclepublishing.com

Doug Steele has worked with databases, both mainframe and PC,

for many years. Microsoft has recognized him as an Access MVP for

his contributions to the Microsoft-sponsored newsgroups. Check

http://I.Am/DougSteele for some Access information, as well as

Access-related links. He enjoys hearing from readers who have ideas

for future columns, though personal replies aren’t guaranteed.

